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Abstract

Most spoken dialogue systems decide whether to accept or re-
ject results from the speech recognition component by applying
a threshold to the associated confidence score. We show how
a simple and general method, based on standard approaches
to document classification using Support Vector Machines, can
give substantially better performance. Experiments carried out
on a medium-vocabulary command and control task show a rel-
ative reduction in the task-level error rate by about 25% com-
pared to the baseline confidence threshold method.

1. Introduction

A standard architecture for a spoken dialogue system typi-
cally includes modules that realise the functionalities of speech
recognition, semantic analysis, dialogue management and out-
put generation. Speech is converted into words by the speech
recogniser, and then into semantic representations by the se-
mantic analyser; the dialogue manager uses this to formulate an
abstract response, which is then realised by the output manager.

This picture, however, omits an important component.
Since speech input is noisy and speech recognition is uncer-
tain, at least some of the results from the speech recogniser will
be unusable, and should ideally be ignored. This is particu-
larly important for systems that use “open mic” (as opposed to
“push-to-talk™) speech recognition, where the recogniser is al-
ways turned on and listening. In this case, some of the speech
from the user (“cross-talk”) will not even be directed to the sys-
tem, and should certainly not be responded to.

We will refer to the choice between accepting and reject-
ing output from the speech recogniser as the “accept/reject de-
cision”. Usually, the speech recogniser produces a confidence
score as part of its output, and the accept/reject decision is made
simply by rejecting utterances whose confidence score is under
a specified threshold. A recent example is [1], which reported
an accuracy of 9.1% on cross-talk identification using the con-
fidence threshold method.

In this paper, we will show that simple kernel-based ap-
proaches, based on standard methods from the document clas-
sification literature, can substantially improve on the baseline
confidence threshold approach. Experiments were conducted
in the framework of the Clarissa system [2, 3], a voice-enabled
procedure navigator that has recently been deployed on the In-
ternational Space Station. Since the whole point of Clarissa is
to make it possible for astronaut users to navigate through pro-
cedures in an entirely hands- and eyes-free mode, high-quality
open mic speech recognition is crucial to the process.

The rest of the paper describes our solution in detail, fo-

cussing on two key technical problems: choosing an appropriate
kernel function, and adjusting the SVM method to take account
of the fact that false accepts are generally more harmful than
false rejects.

2. The Accept/Reject Decision Task

We start by specifying the task more precisely. We can define
the following three categories of utterance:

Type A: Utterances directed at the system, for which a good
interpretation was produced. We will write N4 for the
number of utterances with good interpretations, and E 4
for the number which are rejected.

Type B: Utterances directed at the system, and to which the
system could in principle respond, but for which the se-
mantic interpretation produced was incorrect. Usually,
this is due to faulty recognition. We write N for the
number of utterances with bad interpretations, and Ep
for the number which are incorrectly accepted.

Type C: Utterances not directed at the system, or directed at
the system but to which the system has no adequate way
to respond. We write N¢ for the number of cross-talk or
out of domain utterances, and E¢ for the number which
are incorrectly accepted.

We wish to accept utterances in the first category, and reject
utterances in the second and third. If we want to measure per-
formance on the accept/reject task, the most straightforward ap-
proach is a simple classification error rate. Ultimately, however,
what we are most interested in is measuring performance on the
top-level speech understanding task, which includes both the
recognition/semantic interpretation task and the accept/reject
task described here.

Constructing a sensible metric for the top-level task in-
volves taking account of the fact that some errors are intuitively
more serious than others. In a Type A error, the user can most
often correct by simply repeating himself. In a Type B or C er-
ror, the user will typically have to wait for the system response,
realise that it is inappropriate, and then undo or correct it, a sig-
nificantly longer operation. This analysis suggests that errors
should not all be counted equally, but rather be weighted to pro-
duce a utility loss function. If we call the weights for the three
types wa, wp and we, then the weighted utility loss will be

waFa+wpEB +wcEc

Assuming that wgs > wa, we can normalise this by dividing
by the maximum possible loss value, giving the normalised loss



function
(waEa +wpEp +wcEc)/(ws(Na + Np) + wceNc)

It is not easy to give clear justifications for particular choices of
weights. One reasonable candidate is wa = 1, wp = 2 and
we = 3. This reflects the observations that it generally appears
to take about twice as long to recover from a false accept as a
false reject, and that a false accept of a cross-talk utterance af-
fects not only the user, but also the person with whom they are
having the side conversation. We will use the “1-2-3" weight-
ing in the rest of this section.

The discrepancy between the (local) loss function associ-
ated with SVM-classifier and the top-level function raises the
issue of how to align SVM objectives with the top level ones.
In this initial work, we simplify the problem by decoupling the
speech understanding and accept/reject subtasks, using separate
metrics. Since the weighting on the task metric penalises false
accepts more heavily than false rejects, we introduce an asym-
metric loss function on the SVM score, which weights false ac-
cepts twice as heavily as false rejects. We will refer to this as
the ua metric, and use it as the filtering task metric to compare
different parameter settings.

We also need to adjust the definition of the top-level task
metric a little, to take account of the fact that some utterances
produce no semantic interpretation at all. Obviously, these ut-
terances can only be rejected. We consequently split class B into
BO (no interpretation) and B1 (bad interpretation), and class C
into CO (no interpretation) and C1 (irrelevant or bad interpre-
tation). The weightings for the top-level loss function are then
defined by Table 1:

Class Score
Reject | Accept
A 1 0
BO 1 1
B1 1 2
Co 0 0
C1 0 3

Table 1: Definition of the top-level loss function. “Accept” and
“Reject” refer to the decision made by the SVM classifier; utter-
ances in the classes B0 and CO are always rejected, irrespective
of the classifier’s decision.

3. An SVM Based Approach

There are several information sources which could potentially
be used as input to the accept/reject classification problem. So
far, we have limited ourselves to the 1-best result returned by the
Nuance speech recognition platform [4], which consists of a list
of words, each tagged by a numerical confidence value. It seems
likely [5] that further improvements could be achieved by using
word-lattices; we were however interested to see what could
be achieved using a readily available platform. Figure 1 shows
examples of typical recognition results, grouped as “positive”
(should be accepted), and “negative” (should be rejected).

The usual way to make the accept/reject decision is by using
a simple threshold on the average confidence score; the Nuance
confidence scores are of course designed for exactly this pur-
pose. Intuitively, however, it should be possible to improve the
decision quality by also taking account of the information in the

Positive

g0:76 t0:70 step:55 eleven:34
repeat:80 the:67 caution:80
stop:73 talking:65

no:36

i:49 meant:73 stop:68 reading:63
decrease:51 volume:89

Negative

stop:4

five:11

where:9 are:14 we:37

list:36 challenge:49 verify:38 it:10 was:65

mark:17 terse:65 mode:23 for:65 note:20 for:62 ten:20 thou-
sand:41

column:7 eight:46 is:55 that:83

Figure 1: Examples of recognition results. Each word is tagged
by a numerical confidence value. Positive hypotheses should be
accepted, negative ones rejected.

recognised words. For instance, the last example under “Nega-
tive” in Figure 1 has a fairly high average confidence score, but
looks dubious on semantic grounds. Similarly, the fourth ex-
ample under “Positive” has a low confidence score, but is none
the less plausible. We would like to improve our chances of
catching examples like these.

The accept/reject decision is clearly a kind of document
classification problem. It is well known [6] that margin-based
classifiers, especially Support Vector Machines (SVM), get
good results for this kind of task. Our original intuition, when
beginning this piece of work, was that slightly modified ver-
sions of standard SVM-based document-classification methods
would also prove appropriate here. There were two key issues
we needed to address in order to apply these methods to the new
task. First, we had to construct a suitable kernel function, which
will define similarity between two recognition results. Second,
we had to take account of the asymmetric nature of the cost
function.

3.1. Choosing a kernel function

As the output of the speech recognizer is limited to a sequence
of words tagged with confidence scores, we have to define some
“kernel” between utterances based on this information. The
simple bag of word representation, as traditionally used to rep-
resent (written) documents, will lose the important confidence
information and is unlikely to produce good results (preliminary
experiments not reported here showed that this was actually the
case). They are three basic degrees of freedom when dealing
with such structures:

e Whether or not to take order information into account
(this is the distrinction between “weighted bag of words”
or “weighted word sequence” kernels);

e as there is only one feature per word, how to combine
the number of occurences and the confidence score in-
formation (e.g. how to represent “go:76 to:70 step:55
eleven:34 dot:48 eleven:42” )

e taking the “multi-word” (n-grams) information into ac-
count.



In our experiments, the first point turns out to be irrele-
vant in the sense that the order information does not seem to
bring enhancements in the metrics used, while consuming much
more computation time (one order of magnitude). For the sec-
ond point, we decided to simply use the “sum” operator for ag-
gregation, even if other operators such as max or min(sum,1)
could be used and theoretically motivated. Finally, the third
point is solved by using nonlinear polynomial kernels, which
automatically explores the space of n-grams (n=degree of the
polynomial kernel). In our experiments, degrees higher than 2
did not increase the performance, so that we restricted ourselves
to quadratic kernels (and therefore 2-words terms as features).

3.2. Making the cost function asymmetric

There are at least two ways to introduce asymmetric costs in
standard SVM implementations. In our experiments, we tried
both these possibilities.

Recall that SVM is optimizing a mixed criterion which
combines classification errors on a training set and a measure of
complexity which is related to the margin concept ([7], p. 220).
The first approach is to penalize the distance to the margin for
misclassified examples more highly for false positives than for
false negatives (this is the ;7 parameter in the svm-light imple-
mentation). Note that, with this (standard) simple approach,
the algorithm doesn’t really optimize our utility function, but
something which is more or less related; this is still a subject of
debate in the Machine Learning community (Ref?).

Another way to deal with asymmetric costs is to use calibra-
tion techniques: calibration aims at transforming SVM scores
into posterior probabilities in a way that is independent from
the class priors (basically P(s(x) | Class) where s(x) is the
score associated with observation z). The optimal Bayesian
decision can then be adapted, once the new class priors are
known (P(Class)), as well as error costs. For a binary prob-
lem (accept/reject) with equal cost of errors for all negative ex-
amples, when the class distribution can be assumed to be the
same on both training and test sets, it is sufficient to approxi-
mate P(Class = A | s(z)), as the optimal Bayes decision is
then based on minimizing the expected loss function (u2 in our
case): accept the utterance if

(2P(Class = Bor C | s(z))) < P(Class = A | s(z))

or, equivalently, if P(Class = A | s(z)) > 2/3. We used
Isotonic Regression to realize the mapping from SVM-scores
into (approximate) posterior probabilities.

4. Experiments

A corpus of 10409 labelled utterances was used in order to in-
vestigate the impact of three factors on classification and task
performance:

Classifier We used three types of classifier: a simple threshold
on the average confidence score; an SVM with a linear
kernel; and an SVM with a quadratic kernel. The SVM
classifiers used a set of features consisting of the aver-
age confidence score together with the weighted bag of
words over the total vocabulary.

Asymmetric Error We used two different techniques to deal
with asymmetric error costs: the j intrinsic parameter
of SVM, and the recalibration procedure using Isotonic
Regression. Recall that recalibration aims at optimising
the us loss function at SVM classification level, and not

the task-level loss function. Without recalibration, the
decision threshold on SVM-scores is 0.

Recognition A persistent folklore result, which we also wished
to investigate, is that grammar-based language models
(GLMs) give better open mic speech understanding per-
formance than conventional statistical language models
(SLMs). Clarissa uses a GLM-based recogniser, created
using an example-based method driven by a training cor-
pus. Since the same training corpus can be used to con-
struct a normal class N-gram recogniser [8], it was possi-
ble to carry out a fair comparison between the two alter-
nate recognition methods. Both recognisers were trained
on the same corpus of 3297 utterances, and have vocabu-
laries of 260 words. WER is 6.3% for the GLM version,
and 7.4% for the SLM version; semantic error rates are
6.0% for the GLM and 9.6% for the SLM.

For each choice of parameters, we performed 10 random
splits (training/test sets) of the initial set of labelled utterances,
learned the model on the training sets, and evaluated the loss
functions on the corresponding test sets. The final scores were
obtained by averaging the loss functions over all 10 runs. Ta-
ble 2 presents results for the most interesting cases.

5. Conclusions

The following conclusions can be drawn from the figures in Ta-
ble 2. Each of these conclusions was confirmed by hypothesis
testing, using the Wilcoxon rank test, at the 5% significance
level.

5.1. Improvement on baseline performance

The SVM-based method is very considerably better than the
baseline method. The average classification error fell from
9.4% for the best baseline configuration (GT-1) to 5.5% for the
best SVM-based configuration (GQ-3), a relative improvement
of 42%. In particular, the false accept rate for cross-talk and out-
of-domain utterances improved from 8.9% (close to the 9.1%
cited in [1]) to 4.7%, a 47% relative improvement, while the
error rates on the other individual classes also improved. On
the task performance metric, the improvement was from 7.0%
to 5.4%, or 25% relative.

5.2. Kernel types

Quadratic kernels performed better than linear (around 25% rel-
ative improvement in classification error); however, this advan-
tage is less marked when considering the task metric (only 3 to
9% relative increase). Though small, the difference is statisti-
cally significant. This suggests that meaningful information for
filtering lies, at least partially, in the co-occurrences of groups
of words, rather than just in isolated words.

5.3. Calibration method

In the case of the SLM recogniser, the use of calibration tech-
niques, either by intrinsic SVM-optimisation or by calibration
in post-processing do not bring significant improvement. This
may be due to the fact that errors on class B utterances are dom-
inant in this model, and calibration is not really able to move the
threshold for these “middle”, ambiguous utterances. When us-
ing the GLM recogniser, on the other hand, the gain of calibra-
tion is now significant: on the w2 loss function (that calibration
aims at minimizing), we attain a 9% relative improvement when
using external calibration and 6% when using intrinsic SVM



ID Rec | Classifier | j Error rates
Accept/reject classification Task
Classes All Ug
Al B | C
ST-1 | SLM | Threshold | 1.0 | 5.5% | 59.1% | 16.5% | 11.8% | 15.1% | 10.1%
SL-1 | SLM Linear 10 | 28% | 37.1% 9.0% 6.6% 8.6% 7.4%
SL-2 | SLM Linear 05 | 49% | 30.1% 6.8% 7.0% 8.1% 7.2%

23.6% 8.5% 5.5% 7.0% 6.9%
18.7% 7.6% 6.0% 7.0% 7.0%

SQ-1 | SLM | Quad | 1.0 | 2.6%
SQ2 | SLM | Quad | 05| 4.1%

SQ-3 | SLM Quad/r 1.0 | 47% | 18.7% 6.6% 6.1% 6.8% 6.9%
GT-1 | GLM | Threshold | 0.5 | 7.1% | 48.7% 8.9% 9.4% | 10.7% 7.0%
GL-1 | GLM Linear 1.0 | 2.8% | 48.5% 8.7% 6.3% 8.3% 6.2%
GL-2 | GLM Linear 05 | 47% | 43.4% 6.0% 6.7% 7.9% 6.0%

37.9% 6.8% 5.3% 6.7% 5.7%
26.8% 6.0% 5.5% 6.3% 5.6%
28.1% 4.7% 5.5% 6.1% 5.4%

GQ-1| GLM | Quad | 1.0 | 2.7%
GQ-2 | GLM | Quad | 05 | 4.0%
GQ-3 | GLM | Quadr | 1.0 | 4.3%

Table 2: Performance on accept/reject classification and the top-level task, on 12 different configurations of the system. “Threshold” =
simple threshold on average confidence; “Linear” = SVM classifier with linear kernel; “Quad” = SVM classifier with quadratic kernel;

“Quad/r” = recalibrated version of SVM classifier with quadratic kernel; “A” = in-domain and correct semantic interpretation; “B” =
in-domain and incorrect or no semantic interpretation; “C” = out-of-domain; “All” = standard classifier error rate over all data; “us” =
weighted average of classifier error using u2 weights; “Task” = normalised task metric score; “;” = value of svm-light J parameter.

clabration; on the task metric, gains are reduced to 5% (rela-
tive) for external calibration, and only 2% for SVM-calibration
(still statistically significant). Error rates on individual classes
show that this improvement is due to an increased rate of rejec-
tion of class A utterances and a smaller rate of acceptation of
both class B and class C utterances.

5.4. Recognition methods

Using the baseline method, there was a large difference in per-
formance between the GLM-based GT-1 and the SLM-based
ST-1. In particular, the false accept rate for cross-talk and out-
of-domain utterances nearly twice as high (16.5% versus 8.9%)
for the SLM-based recogniser. This supports the folklore result
that GLM-based recognisers give better performance on the ac-
cept/reject task.

When using the SVM-based methods, the best GLM-based
configuration (GQ-3) performs about as well as the best SLM-
based configuration (SQ-1) in terms of average classification
error, with both systems scoring about 5.5%. GQ-3 does per-
form considerably better than SQ-1 in terms of task error (5.4%
versus 6.9%, or 21% relative), but this is due to better perfor-
mance on the speech recognition and semantic interpretation
tasks. Our conclusion here is that GLM-based recognisers do
not necessarily offer superior performance to SLM-based ones
on accept/reject performance, if a more sophisticated method
than a simple confidence threshold is used.

5.5. Relative error rates on individual classes

A deeper look at the error rates by individual classes show that,
for all methods, by far the largest error rates are observed for the
B category. This is not surprising: experience and intuition tell
us that the hardest decision problem is distinguishing between
correctly recognised in-domain and incorrectly recognised in-
domain utterances. What makes it difficult is that “incorrect”
is often better characterised as “partially correct”, so we have
much less information to go on.

For example, a problem in any domain which involves

English numbers is the well-know “-teen/-ty” ambiguity —
“thirty” sounds a lot like “thirteen”, and so on. If the user
says “go to step thirty” but the system recognises “go to step
thirteen”, the correct action is to reject, but there is little in-
formation available to support the decision: basically, we need
confidence to be low on the word “thirty”, but our observation
is that this is atypical. There are a number of similar generic
cases where partial recognition happens easily. We can contrast
this with distinguishing between A and C class utterances —
cross-talk recognition results tend to look very different from
correct in-domain ones, since cross-talk recognition is usually
completely wrong rather than just partially wrong. The decision
problem is thus intuitively simpler.
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